3.351 \(\int \frac {x^3}{\sqrt {1-c^2 x^2} (a+b \sin ^{-1}(c x))} \, dx\)

Optimal. Leaf size=121 \[ -\frac {3 \sin \left (\frac {a}{b}\right ) \text {Ci}\left (\frac {a+b \sin ^{-1}(c x)}{b}\right )}{4 b c^4}+\frac {\sin \left (\frac {3 a}{b}\right ) \text {Ci}\left (\frac {3 \left (a+b \sin ^{-1}(c x)\right )}{b}\right )}{4 b c^4}+\frac {3 \cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \sin ^{-1}(c x)}{b}\right )}{4 b c^4}-\frac {\cos \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 \left (a+b \sin ^{-1}(c x)\right )}{b}\right )}{4 b c^4} \]

[Out]

3/4*cos(a/b)*Si((a+b*arcsin(c*x))/b)/b/c^4-1/4*cos(3*a/b)*Si(3*(a+b*arcsin(c*x))/b)/b/c^4-3/4*Ci((a+b*arcsin(c
*x))/b)*sin(a/b)/b/c^4+1/4*Ci(3*(a+b*arcsin(c*x))/b)*sin(3*a/b)/b/c^4

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 117, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {4723, 3312, 3303, 3299, 3302} \[ -\frac {3 \sin \left (\frac {a}{b}\right ) \text {CosIntegral}\left (\frac {a}{b}+\sin ^{-1}(c x)\right )}{4 b c^4}+\frac {\sin \left (\frac {3 a}{b}\right ) \text {CosIntegral}\left (\frac {3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b c^4}+\frac {3 \cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\sin ^{-1}(c x)\right )}{4 b c^4}-\frac {\cos \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b c^4} \]

Antiderivative was successfully verified.

[In]

Int[x^3/(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])),x]

[Out]

(-3*CosIntegral[a/b + ArcSin[c*x]]*Sin[a/b])/(4*b*c^4) + (CosIntegral[(3*a)/b + 3*ArcSin[c*x]]*Sin[(3*a)/b])/(
4*b*c^4) + (3*Cos[a/b]*SinIntegral[a/b + ArcSin[c*x]])/(4*b*c^4) - (Cos[(3*a)/b]*SinIntegral[(3*a)/b + 3*ArcSi
n[c*x]])/(4*b*c^4)

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[d^p/c^(
m + 1), Subst[Int[(a + b*x)^n*Sin[x]^m*Cos[x]^(2*p + 1), x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n},
x] && EqQ[c^2*d + e, 0] && IntegerQ[2*p] && GtQ[p, -1] && IGtQ[m, 0] && (IntegerQ[p] || GtQ[d, 0])

Rubi steps

\begin {align*} \int \frac {x^3}{\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\sin ^3(x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{c^4}\\ &=\frac {\operatorname {Subst}\left (\int \left (\frac {3 \sin (x)}{4 (a+b x)}-\frac {\sin (3 x)}{4 (a+b x)}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{c^4}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {\sin (3 x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^4}+\frac {3 \operatorname {Subst}\left (\int \frac {\sin (x)}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^4}\\ &=\frac {\left (3 \cos \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^4}-\frac {\cos \left (\frac {3 a}{b}\right ) \operatorname {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^4}-\frac {\left (3 \sin \left (\frac {a}{b}\right )\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^4}+\frac {\sin \left (\frac {3 a}{b}\right ) \operatorname {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}+3 x\right )}{a+b x} \, dx,x,\sin ^{-1}(c x)\right )}{4 c^4}\\ &=-\frac {3 \text {Ci}\left (\frac {a}{b}+\sin ^{-1}(c x)\right ) \sin \left (\frac {a}{b}\right )}{4 b c^4}+\frac {\text {Ci}\left (\frac {3 a}{b}+3 \sin ^{-1}(c x)\right ) \sin \left (\frac {3 a}{b}\right )}{4 b c^4}+\frac {3 \cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\sin ^{-1}(c x)\right )}{4 b c^4}-\frac {\cos \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 a}{b}+3 \sin ^{-1}(c x)\right )}{4 b c^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 92, normalized size = 0.76 \[ -\frac {3 \sin \left (\frac {a}{b}\right ) \text {Ci}\left (\frac {a}{b}+\sin ^{-1}(c x)\right )-\sin \left (\frac {3 a}{b}\right ) \text {Ci}\left (3 \left (\frac {a}{b}+\sin ^{-1}(c x)\right )\right )-3 \cos \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\sin ^{-1}(c x)\right )+\cos \left (\frac {3 a}{b}\right ) \text {Si}\left (3 \left (\frac {a}{b}+\sin ^{-1}(c x)\right )\right )}{4 b c^4} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])),x]

[Out]

-1/4*(3*CosIntegral[a/b + ArcSin[c*x]]*Sin[a/b] - CosIntegral[3*(a/b + ArcSin[c*x])]*Sin[(3*a)/b] - 3*Cos[a/b]
*SinIntegral[a/b + ArcSin[c*x]] + Cos[(3*a)/b]*SinIntegral[3*(a/b + ArcSin[c*x])])/(b*c^4)

________________________________________________________________________________________

fricas [F]  time = 0.65, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-c^{2} x^{2} + 1} x^{3}}{a c^{2} x^{2} + {\left (b c^{2} x^{2} - b\right )} \arcsin \left (c x\right ) - a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(a+b*arcsin(c*x))/(-c^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*x^2 + 1)*x^3/(a*c^2*x^2 + (b*c^2*x^2 - b)*arcsin(c*x) - a), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(a+b*arcsin(c*x))/(-c^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.08, size = 93, normalized size = 0.77 \[ \frac {\Ci \left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \sin \left (\frac {3 a}{b}\right )+3 \Si \left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right )-3 \Ci \left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right )-\Si \left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \cos \left (\frac {3 a}{b}\right )}{4 c^{4} b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(a+b*arcsin(c*x))/(-c^2*x^2+1)^(1/2),x)

[Out]

1/4/c^4*(Ci(3*arcsin(c*x)+3*a/b)*sin(3*a/b)+3*Si(arcsin(c*x)+a/b)*cos(a/b)-3*Ci(arcsin(c*x)+a/b)*sin(a/b)-Si(3
*arcsin(c*x)+3*a/b)*cos(3*a/b))/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\sqrt {-c^{2} x^{2} + 1} {\left (b \arcsin \left (c x\right ) + a\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(a+b*arcsin(c*x))/(-c^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^3/(sqrt(-c^2*x^2 + 1)*(b*arcsin(c*x) + a)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^3}{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,\sqrt {1-c^2\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((a + b*asin(c*x))*(1 - c^2*x^2)^(1/2)),x)

[Out]

int(x^3/((a + b*asin(c*x))*(1 - c^2*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(a+b*asin(c*x))/(-c**2*x**2+1)**(1/2),x)

[Out]

Integral(x**3/(sqrt(-(c*x - 1)*(c*x + 1))*(a + b*asin(c*x))), x)

________________________________________________________________________________________